giovedì 12 giugno 2025

Il costo dell’energia, spiegato in termini non complicati - Massimo Zucchetti

Da: https://zucchett.wordpress.com - Massimo Zucchetti è professore ordinario dal 2000 presso il Politecnico di Torino, Dipartimento di Energia. Attualmente è docente di Radiation Protection, Tecnologie Nucleari, Storia dell’energia, Centrali nucleari. - Massimo Zucchetti 

Vedi anche: I rischi inaccettabili di una guerra nucleare - Massimo Zucchetti
Figura 1 [3,4]

La valutazione del “costo” dell’energia – da sempre aspetto fondamentale – si è negli anni recenti arricchita di nuove tecniche, che tengono in conto il più possibile del “costo reale”, includendo l’intero ciclo di vita [1,2]. La figura 1 soprastante [3,4] ci fornisce il quadro in una sola occhiata: le energie rinnovabili, in questo secolo, ci hanno fatto la sorpresa di diventare la via più economica per produrre energia elettrica. Anche senza parlare di impatto ambientale, clima, rischi, eccetera. Badando soltanto al vil denaro. Questa breve analisi tratta dei costi di generazione di elettricità da diverse fonti [5-9], analizzando metriche come il costo livellato dell’elettricità e i fattori che influenzano i costi.

Costi di Generazione Elettrica

La generazione di elettricità comporta vari costi suddivisi in costi all’ingrosso, costi al dettaglio e costi esterni [12-14]. I costi all’ingrosso includono capitale iniziale, operazioni e manutenzione, trasmissione e smantellamento.

  • I costi all’ingrosso sono rappresentati in dollari per megawattora (MWh).
  • I costi medi di generazione da energia solare e eolica onshore sono ora inferiori rispetto a quelli del carbone e del gas [19-24].
  • I costi di produzione di energia rinnovabile sono diminuiti significativamente, con il 62% della potenza rinnovabile aggiunta nel 2020 a costi inferiori rispetto alle opzioni fossili più economiche.

Costo dell’Energia Livellato (LCOE)

Il LCOE è una misura del costo medio netto della generazione di elettricità nel tempo. Richiede valutazioni anche sui costi non finanziari.

  • Il LCOE è calcolato come il valore attuale netto di tutti i costi diviso per l’output energetico totale.
  • Il LCOE è considerato il mezzo più adeguato per valutare i costi di un progetto di generazione di energia elettrica, considerando l’intero suo ciclo di vita, “dalla culla alla tomba”
  • Le fonti rinnovabili sempre più beneficiano di economie di scala e la loro economicità rispetto alle fossili e al nucleare è già evidente oggi e tenderà ad aumentare in futuro.
  • L’unica energia non rinnovabile per la quale valga la pena di far confronti con le rinnovabili in termini di costi è il nucleare, perché anch’esso “low carbon”, al di là delle ben note divergenze di opinione riguardo la sicurezza e il ciclo del combustibile nucleare [71-73, 116]: si incontrano in letteratura peer-reviewed o comunque scientificamente affidabile le opinioni più diverse (ad esempio, opposte in [88,89].
  • Vi è tuttavia da tener presente che neppure le fonti rinnovabili sono esenti da rischi e impatti ambientali [74,75,78-80]
  • Le energie fossili, semplicemente, non possono invece essere più ammissibili in un mero confronto economico, per ragioni ovvie: il Pianeta non è più in grado di tollerarle, ed esse debbono in realtà scomparire nel più breve tempo possibile, “costi quel che costi” [66-70, 81]. Tuttavia resta spazio, nel breve termine, soltanto per il gas naturale, come sostituto del carbone e petrolio, viste le sue minori emissioni di CO2 a parità di energia prodotta.
  • La figura 1 [3,4] ci mostra un esempio dell’andamento del LCOE per le varie fonti. Scartando come detto “a priori” le fossili, il nucleare è una fonte che – tenuto conto del ciclo di vita completo – risulta meno competitiva economicamente rispetto alle rinnovabili [25-29, 43-47, 52-54]. Può essere tuttavia una scelta comunque perseguibile in Nazioni che abbiano un programma nucleare già avviato, e nelle quali lo Stato sia disponibile, per motivazioni anche di tipo strategico, a supportare parzialmente il costo del nucleare: si veda ad esempio qui sotto in figura 2 il caso emblematico della Francia [123,124]. Va sottolineato comunque che – nell’ottica della ineludibile decarbonizzazione totale della produzione di energia, il nucleare è comunque sempre preferibile alle energie fossili.
Figura 2

Costi di Capitale e Operativi

I costi di capitale sono espressi come costo per kilowatt e variano notevolmente tra le diverse fonti di energia.

  • I costi di capitale per il carbone e le centrali a combustibili fossili sono sempre stati, in passato, un punto di forza per queste centrali. Ma i dati odierni mostrano un livellamento verso il basso delle rinnovabili, purché si opti per le grandi centrali e l’economia di scala per il solare [55-57], mentre per i piccoli impianti solari non ha senso un confronto con i costi dell’energia di grandi impianti, le ragioni per installarli comprendono molti altri fattori [61-65] . I costi di capitale restano un fattore di incertezza per il nucleare, possono essere diminuiti solo in caso di un affidabile certezza di un basso costo del denaro e di una velocità di costruzione minore possibile. Vedi figura 3 (ref in caption).
  • I costi operativi tendono a essere più bassi per le rinnovabili e il nucleare rispetto ai combustibili fossili.
Figura 3

Costi Esterni delle Fonti Energetiche

I costi esterni non sono sempre inclusi nei prezzi dell’elettricità e possono includere impatti ambientali e costi per la salute.

  • I costi esterni del carbone sono i più alti nell’UE, con il riscaldamento globale che rappresenta la parte più significativa.
  • La tassazione del carbonio è un metodo per affrontare i costi esterni delle fonti fossili.

Studi Globali sui Costi di Generazione 

Diversi studi globali mostrano che le fonti rinnovabili stanno diventando sempre più competitive in termini di costi (figura 4, riferimento in caption) [molta letteratura già citata, cui aggiungiamo 82-87].

Figura 4
Figura 5

La figura 5 ci mostra come il punto-chiave per la riduzione drammatica dei costi del solare fotovoltaico e dell’eolico nello scorso decennio sia stata la loro diffusione: più se ne installa, più la loro competitività economica migliora [91-102].

Un tool interessante [90] consente all’utente anche non esperti di effettuare da sé alcune stime basilari.

Riduzione dei Costi delle Energie Rinnovabili in Europa e OECD

I costi di produzione dell’energia rinnovabile in Europa, in particolare per il fotovoltaico, sono diminuiti drasticamente negli ultimi anni, con una riduzione del 75% dal 2010 al 2017. [103-115, 117-122].

Pur con diversi e giustificati approcci, è evidente l’orientamento verso le rinnovabili anche in quasi tutti i Paesi OECD extraeuropei, discorso a parte verrà fatto per gli USA [127-135].

La figura 6 ci mostra più in generale la riduzione del costo dell’eolico (ref. in caption]

Un altro aspetto che non approfondiamo per brevità è la necessità, in presenza sempre più ampia di fonti energetiche intermittenti come solare ed eolico, di sviluppare l’energy storage [10,11]. Ciò potrà consentire valutazioni migliorate del LCOA per le rinnovabili [15-16].

Figura 6

Proiezioni dei Costi di Energia negli Stati Uniti

Negli Stati Uniti, i costi di generazione elettrica per le fonti rinnovabili sono diminuiti drasticamente dal 2010, con proiezioni future che indicano ulteriori riduzioni. [136-146]

  • Riduzioni dei costi dal 2010 al 2019:
    Fotovoltaico: -88%
    Eolico onshore: -71%
    Gas naturale: -49%
  • Proiezioni LCoE per il 2025:
    • Fotovoltaico: 32.80 $/MWh
    • Eolico: 34.10 $/MWh
Figura 7 (da https://yaleclimateconnections.org/2024/09/donald-trump-is-wrong-about-the-cost-of-wind-energy/)

Attualmente, al netto di eventuali politiche di favoreggiamento delle fonti fossili da parte della nuova amministrazione USA, e contemporaneo ostacolo allo sviluppo delle rinnovabili (figura 7), si può verificare la caduta spettacolare del costo di solare ed eolico negli ultimi 15 anni, oggi innegabilmente la via più economica di installare nuova energia elettrica in USA (figura 8).

Figura 8

La stessa Agenzia EIA (US Energy Information Administration, Agenzia ufficiale USA a livello federale, da non confondere con la IEA) ha smesso di fare previsioni sui costi di carbone e nucleare, non considerando più credibili nuove costruzioni, ed ha evidenziato riduzioni in un decennio del 77% per il costo del MWh eolico, e del 92% del solare.

Conclusioni

L’analisi dei costi di generazione elettrica mostra che le tecnologie rinnovabili stanno diventando sempre più competitive. Le proiezioni indicano che i costi continueranno a scendere, rendendo le rinnovabili una scelta preferita per la generazione di energia.

  • Le tecnologie rinnovabili mostrano costi in calo.
  • Le proiezioni future indicano una continua diminuzione dei costi.
  • L’adozione delle energie rinnovabili ha un impatto economico significativo, contribuendo a ridurre le emissioni e i costi energetici. Le politiche di supporto e gli investimenti in rinnovabili sono cruciali per la transizione energetica.
  • L’energia nucleare, sebbene meno conveniente, ormai, economicamente rispetto alle rinnovabili, è l’unica altra fonte energetica sulla quale sia eticamente corretto ragionare in termini di costi, mentre non lo è più per qualsiasi fonte fossile: può essere una valida alternativa alle fonti fossili in quei paesi già dotati di un programma nucleare sviluppato, disponibili a supportare economicamente questa fonte per ragioni anche non esclusivamente commerciali.

Riferimenti

  1.  “WG III contribution to the Sixth Assessment Report” (PDF). Archived from the original (PDF) on 4 April 2022. Retrieved 4 April 2022.
  2.  “Working Group III Report” (PDF). Archived from the original (PDF) on 4 April 2022. Retrieved 4 April 2022.
  3.  Chrobak, Ula (28 January 2021). “Solar power got cheap. So why aren’t we using it more?”Popular Science. Infographics by Sara Chodosh. Archivedfrom the original on 29 January 2021. Chodosh’s graphic is derived from data in “Lazard’s Levelized Cost of Energy Version 14.0” (PDF). Lazard.com. Lazard. 19 October 2020. Archived (PDF) from the original on 28 January 2021.
  4.  “Lazard LCOE Levelized Cost Of Energy+” (PDF). Lazard. June 2024. p. 16. Archived (PDF) from the original on 28 August 2024.
  5.  “Renewable Power Costs in 2022”IRENA.org. International Renewable Energy Agency. August 2023. Archived from the original on 29 August 2023.
  6.  “Majority of New Renewables Undercut Cheapest Fossil Fuel on Cost”IRENA.org. International Renewable Energy Agency. 22 June 2021. Archived from the original on 22 June 2021. ● Infographic (with numerical data) and archive thereof
  7.  Renewable Energy Generation Costs in 2022 (PDF). International Renewable Energy Agency (IRENA). 2023. p. 57. ISBN 978-92-9260-544-5Archived (PDF) from the original on 30 August 2023. Fig. 1.11
  8.  Roser, Max (December 2020). “Why did renewables become so cheap so fast?”Our World in Data. Retrieved 4 June 2022.
  9.  Nuclear Energy Agency/International Energy Agency/Organization for Economic Cooperation and Development Projected Costs of Generating Electricity (2005 Update) Archived 12 September 2016 at the Wayback Machine
  10.  Schmidt, Oliver; Melchior, Sylvain; Hawkes, Adam; Staffell, Iain (January 2019). “Projecting the Future Levelized Cost of Electricity Storage Technologies”Joule3 (1): 81–100. Bibcode:2019Joule…3…81Sdoi:10.1016/j.joule.2018.12.008hdl:10044/1/75632.
  11.  Hittinger, Eric S.; Azevedo, Inês M. L. (28 January 2015). “Bulk Energy Storage Increases United States Electricity System Emissions”. Environmental Science & Technology49 (5): 3203–3210. Bibcode:2015EnST…49.3203Hdoi:10.1021/es505027pPMID 25629631.
  12.  US Energy Information Administration (July 2013). “Assessing the Economic Value of New Utility-Scale Electricity Generation Projects” (PDF). p. 1. Using LACE along with LCOE and LCOS provides a more intuitive indication of economic competitiveness for each technology than either metric separately when several technologies are available to meet load.
  13.  US Energy Information Administration, Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2014, April 2014.
  14.  EIA 2021 Levelized Costs of New Generation Resources in the Annual Energy Outlook 2021
  15.  Veronese, Elisa; Manzolini, Giampaolo; Moser, David (May 2021). “Improving the traditional levelized cost of electricity approach by including the integration costs in the techno-economic evaluation of future photovoltaic plants”International Journal of Energy Research45 (6): 9252–9269. Bibcode:2021IJER…45.9252Vdoi:10.1002/er.6456hdl:11311/1203655S2CID 234043064.
  16.  “Renewable energy has hidden costs”The EconomistISSN 0013-0613. Retrieved 21 September 2023.
  17.  Savcenko, Kira; Perez, Mario (21 December 2021). “Renewable capture prices: why they are crucial for energy transition”http://www.spglobal.com. Retrieved 21 September 2023.
  18.  Synertics. “Understanding Capture Prices”http://www.synertics.io. Retrieved 21 September 2023.
  19.  “Power surge: the value of investing in renewables – Risk.net”http://www.risk.net. 4 September 2020. Retrieved 21 September 2023.
  20.  A Review of Electricity Unit Cost Estimates Working Paper, December 2006 – Updated May 2007 “A Review of Electricity Unit Cost Estimates” (PDF). Archived from the original (PDF) on 8 January 2010. Retrieved 6 October2009.
  21.  “Cost of wind, nuclear and gas powered generation in the UK”Claverton-energy.com. Retrieved 4 September 2012.
  22.  “David Millborrows paper on wind costs”Claverton-energy.com. Retrieved 4 September 2012.
  23.  “Cost and Performance Characteristics of New Generating Technologies”(PDF). Annual Energy Outlook 2022. U.S. Energy Information Administration. March 2022.
  24.  “Electricity Technologies and Data Overview”. US National Renewable Energy Laboratory. 2022.
  25.  “Olkiluoto 3: Finnlands EPR geht ans Netz”. 9 March 2022.
  26.  “Final and Total Capital Costs of the Darlington Nuclear Generating Station”Archived 22 April 2012 at the Wayback Machine, Ontario Power Generation, 27 April 2004.
  27.  “Capacity factor – it’s a measure of reliability”.
  28.  World Nuclear Performance Report 2021 (Report). World Nuclear Association. September 2021. Report No. 2021/003.
  29.  “Explainer: Base Load and Peaking Power”. 5 July 2012.
  30.  “Deutschland geht offshore: EWE, E.ON und Vattenfall errichten erste Windkraftanlage für alpha ventus” [Germany goes offshore: EWE, E.ON and Vattenfall build the first wind turbine for alpha ventus] (PDF) (Press release) (in German). alpha ventus. 15 July 2009.
  31.  “Offshore-Windpark alpha ventus produziert 2012 deutlich über dem Soll”.
  32.  David L. Battye; Peter J. Ashman. Radiation associated with Hot Rock geothermal power (PDF). Australian Geothermal Energy Conference 2009.
  33.  “Þeistareykir geothermal station in operation”. 18 November 2017.
  34.  “Siemens Annual Review 2006” (PDF). p. 2. Archived from the original(PDF) on 22 January 2017.
  35.  Vitzthum, Thomas (7 March 2013). “Energiewende: Stadtwerke fordern Gaskraftwerk-Abschaltung”Die Welt.
  36.  Martinez, A.; Iglesias, G. (February 2022). “Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic”Renewable and Sustainable Energy Reviews154: 111889. Bibcode:2022RSERv.15411889Mdoi:10.1016/j.rser.2021.111889S2CID 244089510.
  37.  “Solarpark Lieberose in Zahlen”http://www.solarpark-lieberose.de. Archived from the original on 8 January 2014. Retrieved 27 April 2022.
  38.  “Größtes Solarkraftwerk in Deutschland eröffnet [5274]”. 22 September 2018.
  39.  “Juwi verkauft Solarpark Lieberose”. 30 March 2010.
  40.  “Bhadla Solar Park, Jodhpur District, Rajasthan, India”.
  41.  Darci Pauser; Kaira Fuente; Mamadou Djerma. “Sustainable Rural Electrification” (PDF). GSDR 2015 Brief.
  42.  Schwartzman, David; Schwartzman, Peter (August 2013). “A Rapid Solar Transition is not only Possible, it is Imperative!”. African Journal of Science, Technology, Innovation and Development5 (4): 297–302. doi:10.1080/20421338.2013.809260S2CID 129118869.
  43.  “Why Refuel a Nuclear Reactor Now?”. April 2020.
  44.  “Reactor Refueling”Nuclear Power.
  45.  “Nuclear Power Economics | Nuclear Energy Costs – World Nuclear Association”.
  46.  “Benchmarking Nuclear Plant Operating Costs”. November 2009.
  47.  “Nuclear Power Economic Costs”.
  48.  “Der Strombedarf steigt, doch alte Windräder werden abmontiert”.
  49.  “Der Strombedarf steigt, doch alte Windräder werden abmontiert”.
  50.  “Schwarz-Gelb setzt auf Milliarden der AKW-Betreiber”Der Tagesspiegel Online. 29 September 2009.
  51.  “”Sollten Kernkraftwerke weiter betreiben””.
  52.  Frondel, Manuel. “Atomkraftwerke: Staat soll Laufzeiten versteigern statt verschenken”Faz.net.
  53.  “(Xenon-135) Response to Reactor Power Changes”Nuclear-Power.net. Retrieved 8 August 2019.
  54.  “Molten Salt Reactors”. World Nuclear Association. December 2018. Retrieved 8 August 2019. MSRs have large negative temperature and void coefficients of reactivity, and are designed to shut down due to expansion of the fuel salt as temperature increases beyond design limits. . . . The MSR thus has a significant load-following capability where reduced heat abstraction through the boiler tubes leads to increased coolant temperature, or greater heat removal reduces coolant temperature and increases reactivity.
  55.  Joskow, Paul L (1 May 2011). “Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies” (PDF). American Economic Review101 (3): 238–241. doi:10.1257/aer.101.3.238.
  56.  Branker, K.; Pathak, M.J.M.; Pearce, J.M. (2011). “A Review of Solar Photovoltaic Levelized Cost of Electricity”Renewable and Sustainable Energy Reviews15 (9): 4470–4482. Bibcode:2011RSERv..15.4470Bdoi:10.1016/j.rser.2011.07.104hdl:1974/6879S2CID 73523633Open access
  57.  Bronski, Peter (29 May 2014). “You Down With LCOE? Maybe You, But Not Me:Leaving behind the limitations of levelized cost of energy for a better energy metric”RMI Outlet. Rocky Mountain Institute (RMI). Archived from the original on 28 October 2016. Retrieved 28 October 2016. Desirable shifts in how we as a nation and as individual consumers—whether a residential home or commercial real estate property—manage, produce, and consume electricity can actually make LCOE numbers look worse, not better. This is particularly true when considering the influence of energy efficiency…If you’re planning a new, big central power plant, you want to get the best value (i.e., lowest LCOE) possible. For the cost of any given power-generating asset, that comes through maximizing the number of kWh it cranks out over its economic lifetime, which runs exactly counter to the highly cost-effective energy efficiency that has been a driving force behind the country’s flat and even declining electricity demand. On the flip side, planning new big, central power plants without taking continued energy efficiency gains (of which there’s no shortage of opportunity—the February 2014 UNEP Finance Initiative report Commercial Real Estate: Unlocking the energy efficiency retrofit investment opportunity identified a $231–$300 billion annual market by 2020) into account risks overestimating the number of kWh we’d need from them and thus lowballing their LCOE… If I’m a homeowner or business considering purchasing rooftop solar outright, do I care more about the per-unit value (LCOE) or my total out of pocket (lifetime system cost)?…The per-unit value is less important than the thing considered as a whole…LCOE, for example, fails to take into account the time of day during which an asset can produce power, where it can be installed on the grid, and its carbon intensity, among many other variables. That’s why, in addition to [levelized avoided cost of energy (LACE)], utilities and other electricity system stakeholders…have used benefit/cost calculations and/or an asset’s capacity value or contribution to peak on a system or circuit level.
  58.  “U.S. electricity consumption 2020”Statista. Retrieved 23 February 2022.
  59.  “Energy Efficiency 2019 – Analysis”IEA. 15 November 2019. Retrieved 23 February 2022.
  60.  “Electricity – World Energy Outlook 2019 – Analysis”IEA. Retrieved 23 February 2022.
  61.  D’Agostino, Delia; Parker, Danny; Melià, Paco; Dotelli, Giovanni (January 2022). “Optimizing photovoltaic electric generation and roof insulation in existing residential buildings”Energy and Buildings255: 111652. Bibcode:2022EneBu.25511652Ddoi:10.1016/j.enbuild.2021.111652hdl:11311/1197905S2CID 243838932.
  62.  “Subsidies and costs of EU energy. Project number: DESNL14583” Pages: 52. EcoFys, 10 October 2014. Accessed: 20 October 2014. Size: 70 pages in 2MB.
  63.  “Solar panel warranty explained”CLEAN ENERGY REVIEWS. Retrieved 19 March 2022.
  64.  Atasu, Atalay; Duran, Serasu; Wassenhove, Luk N. Van (18 June 2021). “The Dark Side of Solar Power”Harvard Business Review.
  65.  “Preliminary Environmental and Financial Viability Analysis of Circular Economy Scenarios for Satisfying PV System Service Lifetime” (PDF). 2021.
  66.  “New research reveals the real costs of electricity in Europe” (PDF). Archived from the original (PDF) on 24 September 2015. Retrieved 10 May 2019.
  67.  ExternE-Pol, External costs of current and advanced electricity systems, associated with emissions from the operation of power plants and with the rest of the energy chain, final technical report. See figure 9, 9b and figure 11
  68.  “Health Indicators of sustainable energy” (PDF). World Health Organization. 2021. …. electric power generation based on the inefficient combustion of coal and diesel fuel [causes] air pollution and climate change emissions.
  69.  Kushta, Jonilda; Paisi, Niki; Van Der Gon, Hugo Denier; Lelieveld, Jos (1 April 2021). “Disease burden and excess mortality from coal-fired power plant emissions in Europe”Environmental Research Letters16 (4): 045010. Bibcode:2021ERL….16d5010Kdoi:10.1088/1748-9326/abecffS2CID 233580803.
  70.  “Carbon pricing – the one thing economists agree on – KPMG United Kingdom”KPMG. 9 November 2020. Archived from the original on 26 September 2021. Retrieved 26 September 2021.
  71.  Viktor Wesselak, Thomas Schabbach, Thomas Link, Joachim Fischer: Regenerative Energietechnik. Springer 2013, ISBN 978-3-642-24165-9, p. 27.
  72.  Publications: Vienna Convention on Civil Liability for Nuclear DamageInternational Atomic Energy Agency.
  73.  Nuclear Power’s Role in Generating Electricity Congressional Budget Office, May 2008.
  74.  Availability of Dam Insurance Archived 8 January 2016 at the Wayback Machine 1999
  75.  “What impact could a CBAM have on energy intensive sectors?”Committees.parliament.uk. Retrieved 22 February 2022.
  76.  “Brexit decision left UK firms paying 10% more than EU rivals for emissions”the Guardian. 9 January 2022. Retrieved 6 February 2022.
  77.  Taylor, Kira (31 January 2022). “Europe’s carbon border levy could pose another post-Brexit challenge for Ireland”Euractiv.com. Retrieved 6 February2022.
  78.  Smallwood, K. Shawn (March 2013). “Comparing bird and bat fatality-rate estimates among North American wind-energy projects”. Wildlife Society Bulletin37 (1): 19–33. Bibcode:2013WSBu…37…19Sdoi:10.1002/wsb.260.
  79.  “How Many Birds Are Killed by Wind Turbines?”American Bird Conservancy. 26 January 2021. Retrieved 5 March 2022.
  80.  “PolitiFact – Solar farms kill thousands of birds, but not as many as fossil fuel plants”Politifact.com. Retrieved 6 February 2022.
  81.  “New research shows proposed coal expansion will cost major cities USD 877 billion, cause quarter-of-a-million premature deaths, jeopardise climate goals”C40 Cities. Retrieved 6 February 2022.
  82.  “Annex III: Technology-specific cost and performance parameters. In: Climate Change 2014: Mitigation of Climate Change” (PDF). Cambridge University Press. p. 1333.
  83.  Renewable Power Generation Costs in 2019. Abu Dhabi: International Renewable Energy Agency (IRENA). June 2020. ISBN 978-92-9260-244-4. Retrieved 6 June 2020.
  84.  “LCOE Lazard” (PDF). 1 April 2023. Based on the then-estimated costs of the Vogtle Plant and US-focused
  85.  “Low-carbon generation is becoming cost competitive, NEA and IEA say in new report”Nuclear Energy Agency (NEA). 9 December 2020. Retrieved 23 June 2021.
  86.  “BNEF Executive Factbook” (PDF). 2 March 2021. Retrieved 3 March 2021.
  87.  Idel, Robert (15 November 2022). “Levelized Full System Costs of Electricity”Energy259: 124905. Bibcode:2022Ene…25924905Idoi:10.1016/j.energy.2022.124905ISSN 0360-5442.
  88.  “BofA: The nuclear necessity”AdvisorAnalyst.com. Retrieved 18 January2024.
  89.  “Basic Information About NO₂”United States Environmental Protection Agency. 6 July 2016. Retrieved 23 February 2022.
  90.  “Levelised Cost of Electricity Calculator – Analysis”IEA. Retrieved 29 October2021.
  91.  “Projected Costs of Generating Electricity 2020 – Analysis”IEA. 9 December 2020. Retrieved 29 October 2021.
  92.  “Levelized Cost of Energy and Levelized Cost of Storage 2020”. 19 October 2020. Archived from the original on 20 February 2021. Retrieved 24 October2020.
  93.  “Scale-up of Solar and Wind Puts Existing Coal, Gas at Risk”. 28 April 2020. Retrieved 31 May 2020.
  94.  Parkinson, Giles (28 April 2020). “Solar, wind and battery storage now cheapest energy options just about everywhere”Reneweconomy.com.au. Retrieved 22 February 2022.
  95.  Haegel, Nancy M.; et al. (2017). “Terawatt-scale photovoltaics: Trajectories and challenges”Science (in German). 356 (6334): 141–143. Bibcode:2017Sci…356..141Hdoi:10.1126/science.aal1288hdl:10945/57762OSTI 1352502PMID 28408563S2CID 206654326.
  96.  Panos Konstantin, Praxishandbuch Energiewirtschaft. Energieumwandlung, -transport und -beschaffung im liberalisierten Markt.Berlin – Heidelberg 2009, pp. 294, 302, 322, 340.
  97.  David Millborrow, Wind edges forward in cost-per-watt battle. In: Wind Power Monthly, Jan. 2011, zit. nach: Alois Schaffarczyk Technische Rahmenbedingungen. In: Jörg v. Böttcher (Hrsg.), Handbuch Windenergie. Onshore-Projekte: Realisierung, Finanzierung, Recht und Technik, München 2012, S. 166.
  98.  Fraunhofer ISE: Studie Stromgestehungskosten Erneuerbare Energien Mai 2012.
  99.  Fraunhofer ISE: Studie Stromgestehungskosten Erneuerbare Energien November 2013.
  100.  Studie Levelised Cost of Electricity 2015 (Nicht mehr online verfügbar), archiviert vom Original 4 February 2022, retrieved 13 October 2017, Autor: VGB PowerTech
  101.  Fraunhofer ISE: Studie Stromgestehungskosten Erneuerbare Energien März 2018. Retrieved 21 March 2018.
  102.  Fraunhofer ISE: Studie Stromgestehungskosten Erneuerbare Energien Juni 2021. Retrieved 2 January 2022.
  103.  Karin Finkenzeller (6 December 2012). “Die Franzosen zweifeln an der Atomkraft” [The French doubt nuclear power]. Zeit Online (in German). Retrieved 12 December 2012.
  104.  “E.ON und RWE kippen AKW-Pläne in Großbritannien” [E.ON and RWE overturn nuclear power plant plans in Great Britain]. Reuters Deutschland (in German). 29 March 2012. Archived from the original on 3 January 2014. Retrieved 30 March 2012.
  105.  Electricity Generation Costs (PDF) (Report). UK: Department of Energy & Climate Change. 19 December 2013. p. 18. Retrieved 3 June2014.
  106.  Knud Rehfeldt; Anna Kathrin Wallasch; Silke Luers, eds. (November 2013). Kostensituation der Windenergie an Land in Deutschland [Cost situation of onshore wind energy in Germany] (PDF) (Report) (in German). Deutschen Windguard. SP13007A1. Archived from the original (PDF) on 13 November 2013. Retrieved 8 September 2022.
  107.  “BEE: Solarstrom kostet nur noch minimal mehr als Strom aus Gas- und Atomkraftwerken; Photovoltaik-Folgekosten sehr gering” [BEE: Solar power only costs slightly more than power from gas and nuclear power plants; Photovoltaic follow-up costs are very low]. SolarServer (in German). 14 October 2014. Archived from the original on 16 October 2014. Retrieved 8 September 2022.
  108.  Umrechnung mit Wechselkurs vom 8. September 2022 und UK-Verbraucherpreisindex seit 2012.
  109.  “Electricity Market Reform – Delivery Plan” (PDF). Department of Energy and Climate Change. December 2013. Retrieved 4 May 2014.
  110.  Carsten Volkery: Kooperation mit China: Großbritannien baut erstes Atomkraftwerk seit Jahrzehnten, In: Spiegel Online 21 October 2013.
  111.  gov.uk: Hinkley Point C Contracts for the Hinkley Point C, veröffentlicht 29 September 2016. Retrieved 1 February 2022
  112.  “Ausschreibung Windanlagen auf See”. Bundesnetzagentur. Retrieved 5 September 2021.
  113.  Jillian Ambrose (20 September 2019), “New windfarms will not cost billpayers after subsidies hit record low”The Guardian (in German), ISSN 0261-3077, retrieved 3 October 2019
  114.  Mike Parr says (31 July 2019). “Portugal’s solar energy auction breaks world record”http://www.euractiv.com. Retrieved 3 October 2019.
  115.  “Które źródła energii w Polsce są najtańsze? Ministerstwo dało odpowiedź” [Which energy sources in Poland are the cheapest? The ministry has provided the answer]. Gramwzielone.pl (in Polish). 13 March 2025. Archived from the original on 24 March 2025. Retrieved 24 March2025.
  116.  “What is the future of nuclear power in the UK?”The Week UK. 4 February 2022. Retrieved 23 February 2022.
  117.  “Climate change: Can the UK afford its net zero policies?”BBC News. 23 February 2022. Retrieved 23 February 2022.
  118.  “Contracts for Difference auctions to be held annually in ‘major step forwards’ for net zero transition”Current. 9 February 2022. Retrieved 23 February 2022.
  119.  “CfD costs to be paid back to electricity suppliers as high wholesale prices continue”Current. 13 January 2022. Retrieved 23 February 2022.
  120.  “UK electricity prices quadrupled in 2021 and fossil gas is to blame”Ember. 14 January 2022. Retrieved 23 February 2022.
  121.  McNally, Phil (18 February 2022). “An Efficient Energy Transition: Lessons From the UK’s Offshore Wind Rollout”. Tony Blair Institute.
  122.  “New Britain-Norway power link makes debut as energy prices soar”Reuters. 1 October 2021. Retrieved 23 February 2022.
  123.  “Coûts de production des ENR” (PDF). ADEME. 22 November 2017. Archived from the original (PDF) on 26 February 2019. Retrieved 10 May2019.
  124.  “One simple chart shows why an energy revolution is coming — and who is likely to come out on top”Business Insider France (in French). 8 May 2018. Retrieved 17 October 2018.
  125.  “Study: Levelized Cost of Electricity – Renewable Energy Technologies – Fraunhofer ISE”. Fraunhofer Institute for Solar Energy Systems ISE. Retrieved 8 September 2022.
  126.  “Study: Levelized Cost of Electricity – Renewable Energy Technologies – Fraunhofer ISE”Fraunhofer Institute for Solar Energy Systems ISE. Retrieved 7 September 2022.
  127.  Ahmadi, Esmaeil; McLellan, Benjamin; Ogata, Seiichi; Mohammadi-Ivatloo, Behnam; Tezuka, Tetsuo (2020). “An Integrated Planning Framework for Sustainable Water and Energy Supply”Sustainability12 (10): 4295. Bibcode:2020Sust…12.4295Adoi:10.3390/su12104295hdl:2433/259701.
  128.  Olğun, Kinstellar-Şeyma (February 2021). “New Turkish-Lira tariff scheme for renewable energy projects in Turkey | Lexology”Lexology.com. Retrieved 3 February 2021.
  129.  “Amendments In The Law On Utilization Of Renewable Energy Sources For The Purpose Of Generating Electrical Energy – Energy and Natural Resources – Turkey”Mondaq.com. Retrieved 21 December 2020.
  130.  Energy Deals 2019 (Report). PricewaterhouseCoopers. February 2020. Archived from the original on 12 January 2021. Retrieved 4 February 2021.
  131.  “2010 Annual Report on Energy (Japan’s “Energy White Paper 2010″) (outline)”(PDF). 28 May 2021. Archived (PDF) from the original on 21 September 2016. Retrieved 1 October 2021.
  132.  Johnston, Eric, “Son’s quest for sun, wind has nuclear interests wary“, Japan Times, 12 July 2011, p. 3.
  133.  Bird, Winifred, “Powering Japan’s future“, Japan Times, 24 July 2011, p. 7.
  134.  Johnston, Eric, “Current nuclear debate to set nation’s course for decades“, Japan Times, 23 September 2011, p. 1. [dead link]
  135.  “Solar Power Generation Costs in Japan” (PDF). Renewable Energy Institute. Retrieved 30 June 2020.
  136.  “U.S. Energy Information Administration (EIA) – Source”. Retrieved 25 November 2016.
  137.  US Energy Information Administration, Levelized cost and levelized avoided cost of new generation resources in the Annual Energy Outlook 2015, 14 April 2015
  138.  US Energy Information Administration, 2016 Levelized cost of new generation resources in the Annual Energy Outlook 2010, 26 April 2010
  139.  US Energy Information Administration, Levelized cost of new generation resources in the Annual Energy Outlook 2011, 26 April 2011
  140.  US Energy Information Administration, Levelized cost of new generation resources in the Annual Energy Outlook 2012, 12 July 2012
  141.  US Energy Information Administration, Levelized cost of new generation resources in the Annual Energy Outlook 2013, 28 January 2013
  142.  US Energy Information Administration, Levelized cost and levelized avoided cost of new generation resources in the Annual Energy Outlook 2014, 17 April 2014
  143.  Levelized cost and levelized avoided cost of new generation resources, US Energy Information Administration, Annual Energy Audit 2016, 5 August 2016.
  144.  Levelized cost and levelized avoided cost of new generation resources, US Energy Information Administration, Annual Energy Outlook 2017, April 2017.
  145.  Levelized cost and levelized avoided cost of new generation resources, US Energy Information Administration, Annual Energy Outlook 2018, March 2018.
  146.  “Levelized Costs of New Generation Resources in the Annual Energy Outlook 2021” (PDF). Eia.gov. February 2021. Retriev

Nessun commento:

Posta un commento